Table I. Relative Nucleophilicities of 9-Substituted Fluorenyl Carbanions (C⁻), 2-Naphthoxide Ions (O⁻), and Thiophenoxide Ions (S⁻) of the Same Basicity in Me.SO Solution at 25 °C^a

halide	k ^{C-} /k ^{O-}	k ^s /k ^c -	k ^{s-} /k ^{o-}	
PhCH ₂ Cl BuCl BuI	$\begin{array}{r} 25\\ 4\\ 55 \end{array}$	550 3000 1300	$ 13500 \\ 12000 \\ 72000 $	

^a Derived from extrapolations using Br ϕ nsted-type plots (e.g., Figure 1). Detailed rate and pK_a data for these reactions, together with reports of product studies, will be presented in the complete paper.

displacements from these Brønsted-type plots give the relative nucleophilicities of thiophenoxides, fluorenyl carbanions, and 2-naphthoxide ions, which are summarized in Table I.

Since the β_{Nu} values vary slightly and the relative rates are substrate dependent (Table I), it is impossible to define exact relative nucleophilicities. It is clear, nevertheless, that thianions are far more nucleophilic in Me₂SO than are carbanions or oxanions of the same basicity. Thiophenoxides are about $10^2 - 10^3$ times more nucleophilic than fluorenyl carbanions and 10⁴-10⁵ times more nucleophilic than 2-naphthoxide ions, depending on the substrate.

The relatively high $k^{S'}/k^{O'}$ ratio toward alkyl halides in hydroxylic solvents¹ can be ascribed in part to the much stronger solvation of O⁻ than S⁻ through hydrogen bonding. If the difference in pK_a values in Me₂SO vs. H₂O (ΔpK_a) is taken as a measure of the relative loss of hydrogen bonding solvation energies in changing from H_2O to Me₂SO, this amounts to about 4.4 kcal/mol for PhS⁻ (ΔpK = 3.2⁶) and 9.5 kcal/mol for 2-NpO⁻ ($\Delta pK_a = 6.9^6$). One would therefore expect 2-NpO⁻ (or PhO⁻) ions to become more nucleophilic, relative to PhS⁻, in changing the medium from H_2O (or MeOH) to Me₂SO, i.e., k^{S^-}/k^{O^-} should decrease. This does not seem to occur, however, since in MeOH $k^{\text{PhS}}/k^{\text{PhO}} \simeq 10^4$ toward MeI,^{7,8} which is about the same order of magnitude that we observe in Me₂SO (Table I). Evidently, the decrease in k^{S^-}/k^{O^-} in Me₂SO caused by the absence of hydrogen bonding is counteracted by other factors that keep the ratio nearly constant in the two media.

The order of nucleophilicities, $F^- > Cl^-$, toward PrOTs in Me₂SO cited above appears at first sight to be contrary to the $O^- < S^-$ order. There is evidence to indicate, however, that F^- is a much stronger base in dipolar nonhydroxylic solvents than Cl^{-,9} The relative reactivities of \tilde{Cl} and Br toward PrOTs in Me₂SO, $k^{Cl}/k^{Br} = 6.6, 4$ correspond to that expected from their relative basicities.¹⁰ Furthermore, fitting Parker's data for Cl⁻ and Br⁻ reacting with BuI in Me₂SO^{2b} to our Brønsted line for the 9- CO_2Me -Fl⁻ family ($\beta_{Nu} = 0.40$) indicates that a Cl⁻ ion is about 10⁴ times more nucleophilic than a carbanion of the same basicity. This suggests that the higher nucleophilicity of anions derived from second (and higher) row elements vs. first row elements of the same basicity is a general phenomenon in solution and is an intrinsic property.

Acknowledgment. This work was supported by a grant from the National Science Foundation. F.G.B. expresses his appreciation to the John Simon Guggenheim Memorial Foundation for a fellowship.

Registry No. 9-CO₂Me-Fl⁻, 12565-94-5; 2-NpO⁻, 15147-55-4; PhS⁻, 13133-62-5; $MeC(CN)_2^-$, 78232-00-5; Ph_2CCN^- , 18802-83-0; 2,4,5- $Cl_3C_6H_2S^-$, 78232-01-6; 9-CO₂Me-2,7-Br₂-Fl⁻, 73838-70-7; 3- $CF_3C_6H_4S^-$, 78232-02-7; 9-CN-Fl⁻, 40052-38-8; 6-Br-2-NpO⁻, 78232-03-8; 4,6-Br₂-2-NpO⁻, 78232-04-9; 2-Br-9-CO₂Me-Fl⁻, 73838-71-8; PhCH₂Cl, 100-44-7; BuCl, 109-69-3; BuI, 542-69-8; 2-naphthol, 135-19-3; 9-(carbomethoxy)fluorene, 3002-30-0.

Frederick G. Bordwell,* David L. Hughes

Department of Chemistry Northwestern University Evanston, Illinois 60201 Received March 31, 1981

Tetraalkylammonium Trihydridocyanoborates. Versatile, Selective Reagents for Reductive Aminations in Nonpolar Media

Summary: Tetrabutylammonium cyanoborohydride or the combination of sodium cyanoborohydride with Aliquat 336 provides useful, convenient reagents for reductive amination of aldehydes and ketones in aprotic or protic media.

Sir: Trihydridocyanoborate (cyanoborohydride)¹ is well established as a mild, selective, acid-stable reducing agent for a variety of conversions including aldehydes and ketones to alcohols,² tosylhydrazones,³ polar alkenes,⁴ and alkyl halides⁵ to hydrocarbons, and numerous carbonnitrogen π -bond derivatives (imines, oximes, enamines) to amines.² This latter transformation has been particularly exploited as an excellent procedure for the reductive amination of aldehydes and ketones.^{1,2,6} However, the commercially available sodium derivative suffers the limitation that solubility is restricted to a few polar protic (H_2O , low molecular weight alcohols), aprotic (Me₂SO, HMPA), or ether (THF, diglyme) solvents.⁸ The reagent is almost totally insoluble and unreactive in most other useful solvents including CH₂Cl₂, CHCl₃, aromatic and aliphatic

(8) Wade, R. C.; Sullivan, E. A.; Berschied, J. R.; Purcell, K. F. Inorg. Chem. 1970, 9, 2146.

⁽⁷⁾ Pearson, R. G.; Sobel, H.; Søngstad, J. J. Am. Chem. Soc. 1968, 90, 319 - 326

⁽⁸⁾ Since the basicity of PhO⁻ is 3.4 higher (in H₂O) than that of PhS⁻, e k^{S⁻}/k^{O⁻} ratio will be about 10⁵ for anions of equal basicity.
(9) Clark, J. H. Chem. Rev. 1980, 80, 429–452. Acidity measurements the $k^{\rm S}$

of HF in Me₂SO will be complicated by strong homohydrogen bonding between fluoride ion and hydrogen fluoride, i.e., F····H−F. (10) The acidities of HBr and HCl in Me₂SO are 0.92^{11a} and 2.0,^{11b}

respectively (11) (a) McCallum, C.; Pethybridge, A. D. Electrochim. Acta 1975, 20,

^{815-818. (}b) Benoit, R. L.; Buisson, C. Electrochim. Acta 1973, 18, 105-110.

⁽¹⁾ For reviews of cyanoborohydride chemistry, see (a) Hutchins, R. O.; Natale, N. R. Org. Prep. Proced. Int. 1979, 11, 201; (b) Lane, C. F. Synthesis 1975, 135; Lane, C. F. Aldrichemica Acta 1975, 8, 3.

⁽²⁾ Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897. Recently, the intermediacy of iminium ions in certain reductive aminations has been questioned: Tadanier, J.; Hallas, R.; Martin, J. R.; Stanaszek, R. S. Tetrahedron 1981, 37, 1309; Kapnang, H.; Charles, G.; Sondengam, B. L.; Hemo, J. H. Tetrahedron Lett. 1977, 3469.

⁽³⁾ Hutchins, R. O.; Maryanoff, B. E.; Milewski, C. A. J. Am. Chem. Soc. 1975, 40, 923.

⁽⁴⁾ Hutchins, R. O.; Rotstein, D.; Natale, N. R.; Fanelli, J.; Dimmel, D. J. Org. Chem. 1976, 41, 3328.

⁽⁵⁾ Hutchins, R. O.; Kandasamy, D.; Maryanoff, C. A.; Masilamani, D.; Maryanoff, B. E. J. Org. Chem. 1977, 42, 82.

⁽⁶⁾ Other reagent systems recently introduced for reductive aminations include: (a) potassium hydridotetracarbonylferrate, Bodrini, G. P.; Panunzio, M.; Umani-Ronchi, A. Synthesis 1974, 261; (b) NaBH₄/H₂SO₄, Giumanini, A. G.; Chiavari, G.; Musiani, M. M.; Rossi, P. Synthesis 1980, Giumanini, A. G.; Chiavari, G.; Musiani, M. M.; Rossi, F. Synthesis 1960, 743; (c) the Leukart reaction; see, for example, Baeh, R. D. J. Org. Chem. 1968, 33, 1647; (d) NaBH₄ in carboxylic solvents, Schellenberg, K. A. J. Org. Chem. 1963, 28, 3259; Gribble, G. W.; Lord, P. D.; Skotnicki, J.; Dietz, S. E.; Eaton, J. T.; Jonson, J. L. J. Am. Chem. Soc. 1974, 96, 781; Marchini, P.; Liso, G.; Reho, A.; Liboratore, F.; Moracci, F. M., J. Org. Chem. 1975, 40, 3453; (e) ion-exchange resin supported BH₃CN⁻, Hutchins, R. O.; Natale, N. R.; Taffer, I. M. J. Chem. Soc., Chem. Com-computer 1072, 1089. mun. 1978, 1088.

⁽⁷⁾ From Alfa or Aldrich Chemical.

	carbonyl	amine	hydride	solvent (time, h)	product (picrate mp, °C) ^{<i>a</i>}	% yield ^b
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₅ CHO	pyrrolidine	NaBH ₃ CN	CH ₃ OH (72)	N-benzylpyrrolidine (123-24)	70
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			TBACB	CH, Cl, (2.5)		76
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			TBACB	THF(2.5)		75
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			TBACB	hexane (2.5)		66
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			TBACB	$C_{eH_{e}}(2.5)$		64
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			TBACB	CH ₃ CN (2.5)		58
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			NaBH ₃ CN	$CH_{2}CI_{2}$ (48)		84
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		morpholine	NaBH, CN	CH,Cl, (48)	N-benzylmorpholine (185–86)	41
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Aliquat 336			77
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$(CH_3CH_2)_2NH^c +$	NaBH, CN	CH ₂ Cl ₂ (42)	$C_{6}H_{5}CH_{2}N(CH_{2}CH_{3})_{2}$ (116-17)	53
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$(CH_3CH_2)_3NH_2^{-1}CH_2$	Aliquat 336			1
		VII3 VII2 VII2 VII2 2	NaBH, CN	$CH_{2}CI_{2}^{2}$ (48) $CH_{2}CI_{2}^{2}$ (48)	V6.115.V112.N11C112.C112.C113.	60 60
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		(CH.), CHNH.	Aliquat 336 TRACR	~	(H)H)H)H)H)H)	0
TBACBCH, CI, CI, CI, CI, CI, CI, CI, CI, CI, CI	BrC, H, CHO	pyrrolidine	TBACB	~~	$V_6 M_5 C M_2 M M C M_3 V_2$ N - hrom obser 2 v[hrwwolidins (140-41)]	000
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-CIC, H, CHO		TBACB	\sim	<i>N</i> -(<i>m</i> -chlorobenzyl)pyrrolidine (153-54)	68
NaBH, CNCH, Gi, (48)N. CH, Gi, (48)pyrrolidineTBACBCH, Gi, (48)pyrrolidineTBACBCH, Gi, (46)NaBH, CNCH, Gi, (45)pyrrolidineTBACBCH, Gi, (45)pyrrolidineTBACBCH, Gi, (25)pyrrolidineTBACBCH, Gi, (25)pyrrolidineTBACBCH, Gi, (25)pyrrolidineTBACBCH, Gi, (25)pyrrolidineTBACBCH, Gi, (23)pyrrolidineTBACBCH, Gi, (23)pyrrolidineTBACBCH, Gi, (23)pyrrolidineTBACBCH, Gi, (23)pyrrolidineCH, Gi, (23)pyrrolidineCH, Gi, (48)naBH, CNCH, Gi, (48)niquat 336CH, Gi, (48)niquat 336CH, Gi, (48)niquat 336CH, Gi, (48)niquat 336CH, Gi, (48)nyrrolidineTBACBnyrrolidineNet CH, GH, NHCH, (182-83)nyrrolidineTBACBnyrrolidineNet CH, GH, GH, GH, GH, GH, GH, GH, GH, GH, G	6-Cl ₂ C ₆ H ₃ CHO		TBACB		N-(2 6-dichlorohenzyl)nvrrolidine (180–81)	57
pyrrolidinePyrrolidineTBAGBCH, CI, (17) N -fees/lpyrrolidine (166-67)pyrrolidineTBAGBCH, CI, (17) N -decylpyrrolidine (166-67)naBH, CNCH, CI, (17) N -decylpyrrolidine (166-67)pyrrolidineTBAGBCH, CI, (17) N -decylpyrrolidine (166-67)pyrrolidineTBAGBCH, CI, (17) N -decylpyrrolidine (165-67)pyrrolidineNaBH, CNCH, CI, (17) N -decylpyrrolidine (125-26)PAGBCH, CI, (17) N -decylpyrrolidine (125-26)PAGBCH, CI, (13) N -decylpyrrolidine (125-26)PAGBCH, CI, (13) N -decylpyrrolidine (125-26)PAGBCH, CI, (13) N -decylpyrrolidine (125-26)NaBH, CNCH, GH, CH, OH N -decylpyrrolidine (125-26)NaBH, CNCH, QH, (12) N -decylpyrrolidine (125-26)NH, OAcTBACBCH, QH, (13)NH, OAcTBACBCH, QHNH, OAcTBACBCH, QHNH, OAcCH, CH, OHNH, OAcCH, CH, CHNH, OAcCH, CH, CHNH, OAcCH, CH, CHNH, OAcCH, CHNH, OAcCH, CH, CHNH, OAcCH, CHNH, OAcCH, CH, CHNH, OAcCH, CH, CHNH, OAcCH, CHPyrrolidineNaBH, CNOHCH, CHNorolidineNaBH, CNNorolidine<			NaBH _a CN	\sim		10
PyrrolidineTBACBCH, Cl, (17)N-G-eyanobenzy)pyrrolidine (166-67)PyrrolidineTBACBCH, Cl, (15)N-decylpyrrolidine (166-67)PyrrolidineTBACBCH, Cl, (12)N-decylpyrrolidine (125-26)PACBCH, Cl, (72)TBACBCH, Cl, (72)PACBCH, Cl, (72)TBACBCH, Cl, (72)PACBCH, Cl, (72)N-decylpyrrolidine (125-26)PBACBCH, Cl, (72)N-decylpyrrolidine (125-26)PBACBCH, Cl, (72)N-decylpyrrolidine (125-26)PBACBCH, Cl, (43)N-(C-H, NHCH, CH, CH, NHCH, CH, NHCH, CH, CH, CH, NHCH, CH, CH, NHCH, CH, CH, NHCH, CH, CH, NHCH, CH, CH, CH, NHCH, CH, CH, NHCH, CH, CH, CH, CH, NHCH, CH, CH, CH, NHCH, CH, CH, CH, CH, CH, NHCH, CH, CH, CH, CH, CH, CH, CH, CH, CH,			Aliquat 336			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	H, (CH.), CHO	py rrouaine	LBACB NaRH CN	CH_2CI_2 (17) CH OH (A6)	N-(<i>p</i> -cyanobenzyl)pyrrolidine (166-67)	538 518
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0/7 VC		TBACB		(4)-attinition (1)-14)	10
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		(CH ₃) ₂ CHNH ₂	TBACB		CH ₃ (CH ₃), CH ₂ NHCH(CH ₃),	52
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H _s COCH,	pyrrolidine	NaBH, CN	CH_{OH} (70)	N-(α-methylbenzyl)pyrrolidine (125-26)	82
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				CH_2CI_2 (72)		89
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			TBACB	C.H. (72)		69 61
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			NaBH, CN	\tilde{CH}_{2} CI ₂ (48)		74
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Aliquat 336			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Aliquet 336	С6Л6 (40)		70
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		CH ₃ NH ₃ +Cl ⁻	TBACB		C,H,CH(CH,)NHCH, (182-83)	71
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			TBACB			< 5 <
$\begin{array}{llllllllllllllllllllllllllllllllllll$		NH OAC	TBACB		C,H,CH(CH,)NH,	49
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Alicinat 336		C ₆ H ₅ CH(CH ₃)NHCH ₂ CH ₂ CH ₃	36
pyrrolidineNaBH, CN $CH_{9}OH$ (72) $(164-65)$ pyrrolidineTBACB $CH_{2}OH$ (72)N-cyclohexylpyrrolidine (163-64)pyrrolidineNaBH, CN $CH_{2}CI_{2}$ (47)N-cyclohexylpyrrolidineAliguat 336 $CH_{2}CI_{2}$ (48)N-cyclohexylpyrrolidineAlabH, CN $CH_{2}CI_{2}$ (48)N-cyclohexylpyrrolidineAdogen 464 $(C,H_{1}, O(42)$ NaBH, CN	BrC,H,CHO	pyrrolidine	TBACB	CH ₂ Cl ₂ (48)	N -(<i>p</i> -bromo- α -methylbenzyl)pyrrolidine	82
TBACB CH_2CI_2 (47) $POPCOMENTPYINDIALPOPCOMENTPYINDIALPOPCOMENTPYINDIALpyrrolidineNaBH,CNCH_2CI_2 (48)N-cyclohexylpyrrolidineAliquat 336CH_2CI_2 (48)N-cyclohexylpyrrolidineAaBH,CNCH_2CI_2 (48)Adogen 464NaBH,CN(C,H_1)_0 (42)$	clohexanone	pvrrolidine	NaBH_CN		(164–65) <u>Mewoloheevylnymmolidine (163–64)</u>	
pyrrolidine $N_{a}BH_{3}CN$ $CH_{2}CI_{3}(48)$ N-cyclohexylpyrrolidine Aliquat 336 $CH_{3}CI_{3}(48)$ N-cyclohexylpyrrolidine NaBH_{3}CN $CH_{3}CI_{3}(48)$ Adogen 464 $(C,H_{3})_{0}(42)$			TBACB		were the state of	17
CH ₂ Cl ₂ (48) (C.H.).O (42)	clohexanone	pyrrolidine	NaBH, CN	$CH_{,}CI_{,}(48)$	N-cyclohexylpyrrolidine	94 94
CH ₂ Cl ₂ (48) (C.H.).O (42)			Aliquat 336	•	2 4 9	
(C.H.),O (42)			NaBH ₃ CN Adoten 464	$CH_{2}CI_{2}$ (48)		78
			NaBH_CN	(C.H.) 0 (43)		0

67	58 52	55 48	36	73 (67t, 33c) 73	31 66 61	h the assigned
	<i>N</i> -cyclohexylmorpholine (169-70)	cyclohexylpropylamine cyclohexylisopropylamine	N, N-diethylcyclohexylamine	4- <i>tert</i> -butylcyclohexanol (~145, mixture) 2-pyrrolidinyloctane (86-87)	CH ₁ (CH ₂) ₅ CH(CH ₃)NHC ₆ H ₅ C ₆ H ₅ N(CH ₃) ₂	New compounds showed IR, NMR, and elemental analysis consistent with the assigned
hexane (42)	$CH_{2}CI_{1}$ (2.5) $CH_{2}CI_{2}$ (48)	CH ₂ Cl ₂ (2.5) CH ₂ Cl ₂ (48)	$CH_{2}CI_{2}$ (48)	$CH_{3}OH (45)$ $CH_{2}Cl_{2}$	$\operatorname{CH}_{2}\operatorname{CN}_{3}$ $\operatorname{CH}_{3}\operatorname{CN}(48)$ $\operatorname{CH}_{2}\operatorname{CI}_{3}$	New compounds showed
NaBH ₃ CN Aliquat 336	TBACB NaBH ₃ CN Aliquat 336	TBACB NaBH,CN Aliquat 336	NaBH ₃ CN Aliquat 336	TBACB NaBH ₃ CN Aliquat 336	TBACB NaBH,CN NaBH,CN Aliquat 336	ic samples.
	morpholine	CH ₃ CH ₂ CH ₂ CH ₂ NH ₂ (CH ₃) ₂ CHNH ₂	$(C_2H_5)_2NH^c + (C_1H_2)_2NH_2 + CI^-$	pyrrolidine	C ₆ H ₅ NH ₂	I by comparisons with au distillation. ^c No added
				4- <i>tert</i> -butylcyclohexanone CH ₃ (CH ₂) ₅ COCH ₃		a All known products were identified by comparisons with authentic samples. structures. b Isolated and purified by distillation. c No added acid.

hydrocarbons, and diethyl ether.

To circumvent the solubility problem and hence augment the utility of cyanoborohydride, we have explored the use of the tetrabutylammonium derivative⁹ and other phase-transfer techniques¹⁰ for typical cyanoborohydride reductions in nonpolar media.^{5,9,11} This communication reports the successful application of phase transfer to reductive amination, which extends the useful media for these conversions to include most common organic solvents, including CH_2Cl_2 , hexane, benzene, and diethyl ether.

Tetrabutylammonium cyanoborohydride (TBACB), prepared as previously described,^{9,11} is an air- and moisture-stable crystalline solid (mp 144-45 °C) which, in contrast to the sodium counterpart, is not hygroscopic. Phase transfer was also used to solubilize NaBH₃CN by employing Aliquat 336, an inexpensive liquid reagent composed of methyltrialkylammonium chlorides with C_8-C_{10} chains. Successful reductive aminations were obtained under a variety of conditions, but the most convenient consisted of simply dissolving the aldehvde or ketone (10 mmol), amine (60 mmol), and TBACB (7 mmol) or NaBH₃CN (7 mmol) plus Aliguat 336 (7 mmol) in 21 mL of solvent followed by addition of HCl (20 mmol), conveniently added as a 2.5-5.0 N solution in methanol or other solvent. Approximately 1 g of 4A molecular sieves was added (to absorb H_2O formed), and the mixture was stirred at ambient temperature. Progress of the reactions could be followed by monitoring the disappearance of the carbonyl by IR. Upon completion, isolations were accomplished in standard fashion (experimental), the products purified by short-path distillation, and identified by comparison (IR and/or NMR) with authentic samples.

The results for a range of carbonyls and amines are presented in Table I. Examples using the standard method (NaBH₃CN, CH₃OH, 2–3 days)² are included for comparisons. As illustrated, aromatic and aliphatic aldehydes and ketones react readily with unhindered primary and secondary amines to afford respectable to excellent isolated yields of amines in reasonable times, usually 2.5–24 h for aldehydes and 24–48 h for ketones. Two limitations were encountered. Relatively hindered secondary amines (i.e., diethylamine) reacted only reluctantly with ketones and gave inferior yields (<40%) of amine products. Also ammonium salts (NH₄+X⁻, RNH₃+X⁻) generally failed to react in aprotic solvents in which solubility is a problem. In such cases, methanol solvent is clearly superior.²

The general reaction procedure is illustrated for the preparation of N-cyclohexylpyrrolidine. To a solution containing pyrrolidine (4.26 g, 60 mmol) in 21 mL of CH_2Cl_2 was added HCl (20 mmol, 8 mL of a 2.5 N solution in CH_3OH) followed by cyclohexanone (0.98 g, 10 mmol), NaBH₃CN (0.44 g, 7 mmol), and Aliquat 336 (2.93 g, 7 mmol). Approximately 1 g of 4A molecular sieves was added, and the mixture was stirred at room temperature for 48 h. The mixture was filtered, the filtrate acidified (methyl orange indicator), and the solvent removed on a rotary evaporator. The residue was taken up with 10 mL of H₂O and extracted with three 20-mL portions of ether

(11) Hutchins, R. O.; Kandasamy, D. J. Org. Chem. 1975, 40, 2530.

⁽⁹⁾ Hutchins, R. O.; Kandasamy, D. J. Am. Chem. Soc. 1973, 95, 6131; a number of other tetraalkylammonium cyanoborohydrides are also readily available: Reparsky, J. E.; Weidig, C.; Kelly, H. C. Syn. React. Inorg. Met.-Org. Chem. 1975, 5, 337.

⁽¹⁰⁾ For excellent, general reviews of phase-transfer reactions, including reductions, see Weber, W. P.; Gokel, G. W. "Phase Transfer Catalysis in Organic Synthesis"; Springer-Verlag: New York, 1977; Keller, W. E. "Compendium of Phase-Transfer Reactions and Related Synthetic Methods"; Fluka AG, Ch-9470 Buchs, Switzerland, 1979.

(discarded). The aqueous phase was basified (solid KOH, phenolphthalein indicator), 20 mL of brine was added, and the mixture was extracted exhaustively with ether. These combined extracts were dried (MgSO₄), concentrated, and distilled in a Kugelrohr apparatus to yield 1.43 g (94%) of N-cyclohexylpyrrolidine, identified by comparison (IR) with an authentic sample. GLC analysis indicated >98% purity.

In conclusion, phase-transfer techniques greatly augment the utility of cyanoborohydride for reductive aminations of carbonyls and complement analogous conversions in protic media.

Acknowledgment. We gratefully thank The National Science Foundation for support of our programs on hydride chemistry.

Registry No. Cyclohexanone, 108-94-1; 4-tert-butylcyclo-hexanone, 98-53-3; pyrrolidine, 123-75-1; morpholine, 110-91-8; Nbenzylpyrrolidine picrate, 78064-90-1; N-benzylmorpholine picrate, 58531-53-6; N-(p-bromobenzyl)pyrrolidine picrate, 78064-91-2; N-(m-chlorobenzyl)pyrrolidine picrate, 78064-93-4; N-(2,6-dichlorobenzyl)pyrrolidine picrate, 78064-95-6; N-(p-cyanobenzyl)pyrrolidine picrate, 78064-97-8; N-decylpyrrolidine picrate, 78064-98-9; N-(α methylbenzyl)pyrrolidine picrate, 78064-99-0; N-(p-bromo- α -methylbenzyl)pyrrolidine picrate, 78065-00-6; N-cyclohexylpyrrolidine picrate, 33109-41-0; N-cyclohexylmorpholine picrate, 33109-39-6; cyclohexylpropylamine picrate, 78065-01-7; cyclohexylisopropylamine picrate, 2499-05-0; N,N-diethylcyclohexylamine picrate, 78065-02-8; N-(4-tert-butylcyclohexyl)pyrrolidine picrate, 78065-03-9; 2-pyrrolidinyloctane picrate, 42367-34-0; TBACB, 43064-96-6; NaBH₃CN, 25895-60-7; C₆H₅CHO, 100-52-7; p-BrC₆H₄CHO, 1122-91-4; *m*-ClC₆H₄CHO, 104-88-1; 2,6-Cl₂C₆H₃CHO, 83-38-5; *p*-NCC₆H₄CHO, 105-07-7; CH₃(CH₂)₆CHO, 112-31-2; C₆- H_5COCH_3 , 98-86-2; $CH_3(CH_2)_5COCH_3$, 111-13-7; CH_2O , 50-00-0; $(CH_3CH_2)_2NH$, 109-89-7; $(CH_3CH_2)_2NH$ ·HCl, 660-68-4; CH_3CH_2C - H_2NH_2 , 107-10-8; $(CH_3)_2CHNH_2$, 75-31-0; CH_3NH_2 ·HCl, 593-51-1; NH₄OAc, 631-61-8; $C_6H_5NH_2$, 62-53-3; $C_6H_5CH_2NHCH_2CH_2CH_3$ Picrate, 78065-04-0; $C_6H_5CH_2NHCH(CH_3)_2$ Picrate, 68723-39-7; CH₃(CH₂)₈CH₂NHCH(CH₃)₂ Picrate, 78065-06-2; C₆H₅CH(CH₃)NH-CH₃ Picrate, 78065-07-3; C₆H₅CH(CH₃)NH₂ Picrate, 78065-08-4; C₆H₅CH(CH₃)NHCH₂CH₂CH₂CH₃ Picrate, 78065-09-5; CH₃(CH₂)₅CH-(CH₃)NHC₆H₅ Picrate, 78065-10-8; C₆H₅N(CH₃)₂ Picrate, 7510-42-1; C₆H₅CH₂N(CH₂CH₃)₂ Picrate, 78065-11-9.

Robert O. Hutchins,* Morris Markowitz

Department of Chemistry Drexel University Philadelphia, Pennsylvania 19104 Received April 29, 1981

Preparation of Hydroxy Crown Ethers by Reactions of Diphenols with Epichlorohydrin

Summary: Reactions of epichlorohydrin with appropriate diphenols in basic aqueous media produce good yields of crown ethers with hydroxyl groups attached to the crown ether ring.

Sir: Synthetic routes to crown ethers which bear pendant functionality have received considerable attention.¹ The functional groups may provide additional liganding atoms for cation complexation,^{2,3} serve as sites for further structural elaboration,³⁻⁷ or function as attachment points

(3) Behr, J-P.; Lehn, J-M.; Vierling, P. J. Chem. Soc., Chem. Commun.

 Table I.
 Formation of Hydroxy Crown Ethers by Reactions of Diphenols with Epichlorohydrin^a

		hydro	xy crowr	n ether ^b
diphenol	M of MOH	identity	yield, %	mp, °C
1a	Na	2a	60	122-123
1b	K	2b	39	73-74
1c	Li	2c	50	142 - 143
1d	Li	2d	51	153-154

^a In a typical procedure, 15 mM of 1, 30 mM of MOH, and 350 mL of water are stirred under nitrogen at 90-95 °C until solution is achieved. After the solution is cooled to 50 °C, 15 mM of 3 is added over a period of 3 h. Upon completion of the addition, the reaction mixture is stirred at 50 °C for an additional 3-5 h and then cooled to room temperature. The precipitate (for 1b the oil solidifies when the reaction mixture is cooled to 0 °C) is filtered and dissolved in CH₂Cl₂. The CH₂Cl₂ solution is washed with water and dried over MgSO₄, and the solvent is evaporated in vacuo to give the crude 2. The crude product is placed on top of a short silica gel column and eluted with Et₂O to separate 2 from a small amount of Et₂Oinsoluble polymeric material. ^b Satisfactory elemental and spectral analyses were obtained for 2a-d.

for binding crown ethers to polymers.^{5,6,8} For such purposes, alcohol groups are often the most versatile. Several methods for the preparation of crown ethers with one or more pendant alcohol-containing groups have appeared.^{1,2,4,6,8,9} However, many are rather complicated multistep syntheses. We now report the facile ring closure of diphenols 1a-e to hydroxy crown ethers 2a-e, using epichlorohydrin (3) in basic aqueous media (eq 1).

 $\begin{array}{ll} \textbf{1a},^{10-12} & Y = CH_2CH_2OCH_2CH_2\\ \textbf{b},^{11,12} & Y = CH_2CH_2OCH_2CH_2OCH_2CH_2\\ \textbf{c},^{13} & Y = CH_2CH_2\\ \textbf{d},^{12} & Y = CH_2CH_2CH_2\\ \textbf{e},^9 & Y = CH_2CH_2CH_2\\ \textbf{f}, & Y = CH_2C(0)NHCH_2CH_2NHC(0)CH_2\\ \end{array}$

2a-f

In an isolated report, Ashby et al.¹⁴ noted that reaction of 3 and the amidic diphenol 1f under basic conditions produced 2f in very low yield. We were therefore surprised to discover that a slow addition of 3 to an aqueous solution of the disodium salt of 1a produced a 60% yield of the

- (5) Cinouni, M.; Colonna, S.; Molinari, H.; Montanari, F. J. Chem. Soc., Chem. Commun. 1976, 394-396.
- (6) Tomoi, M.; Abe, O.; Ikeda, M.; Kihara, K.; Kakiuchi, H. Tetrahedron Lett. 1978, 3031-3034.
 (7) Rastetter, W. H.; Phillion, D. P. Tetrahedron Lett. 1979,
- (1) Rastetter, W. H.; Phillion, D. P. Tetranearon Lett. 1979, 1469-1472.
- (8) Montanari, F.; Tundo, P. Tetrahedron Lett. 1979, 5055-5058.
- (9) Parsons, D. G. J. Chem. Soc., Perkin Trans. I 1978, 451–455.
 (10) Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski,
- T. L.; Moore, S. S.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 2564-2571.
 (11) Oepen, G.; Dix, J. P.; Vögtle, F. Justus Liebigs Ann. Chem. 1978, 1592-1597.
- (12) Blasius, E.; Janzen, K. P.; Keller, M.; Lander, H. Talanta 1980, 27, 107-126.
- (13) Pederson, C. J. Am. Chem. Soc. 1967, 89, 7017-7036.

(14) Ashby, J.; Hull, R.; Cooper, M. J.; Ramage, E. M. Synth. Commun. 1974, 4, 113-117.

Bradshaw, J. S.; Stott, P. E. Tetrahedron 1980, 36, 461-510.
 Gokel, G. W.; Dishong, D. M.; Diamond, C. J. J. Chem. Soc., Chem.

⁽a) Denr. J.-r.; Lenn, J-W.; viering, P. J. Chem. Soc., Chem. Commun. 1976, 621–623.

⁽⁴⁾ Curtis, W. D.; Laidler, D. A.; Stoddart, J. F.; Jones, G. H. J. Chem. Soc., Chem. Commun. 1975, 833–835.